This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Intelligence at the Device

Author : Jeanine Katzel is a contributing editor to Control Engineering

12 January 2010

As components get smarter and more powerful, manufacturers are finding themselves managing high-performance automation and control systems whose parts are capable of monitoring themselves, diagnosing their own problems, and maybe even making a decision or two, economically and easily.

Intelligent wireless devices analyse and transmit information from remote installations accurately and economically. Source: Emerson Process Management
Intelligent wireless devices analyse and transmit information from remote installations accurately and economically. Source: Emerson Process Management

Everything is smarter these days, it seems: smart cars, smart appliances, smart toys. It’s not surprising, then, that intelligent devices are on the rise in industrial automation and control as well. Smart motors, smart sensors, smart flowmeters are only a few among many components packed with microprocessor power in a trend that has all the earmarks of ushering industry into an age of unprecedented product and system performance.

Computing power today is seemingly infinite and data storage and memory relatively inexpensive, says Jeff Woolfolk, business developer and consulting engineer for Siemens Industry Inc. “The name of the game now is how much information can I obtain efficiently and how can I best use it.”

It appears manufacturers are obtaining and using information quite efficiently—and effectively. Thanks to the advent of technological advancements such as systems on a chip, multi-core processing, and higher levels of integration, devices are smaller, lighter, faster, and smarter. They are finding their way into endless applications and reaping benefits in many areas. They are increasingly more capable, as vendors introduce products that are easier to use, energy efficient, self-diagnostic, and wireless; and they are filled with features that are helping to drive companies to the greater efficiencies and through-puts and higher-level processes that they need to stay competitive.

Use those brains!

Building capability into components is not entirely new. Smart motors, drives, and motion control systems are frequent sights in modern facilities. “The components inside drives—the IGBTs, the processors,” says Rich Mintz, product manager, SEW Eurodrive, “were built early on to handle harsh plant floor environments, and that capability, perhaps more than others, has enabled intelligence to move to the device more readily. For intelligence to move to the device level, it must be designed specifically for that environment. Intelligent devices are not the same components found in standard control cabinet electronic products. Manufacturers have asked for these devices, and suppliers have responded, allowing the progression from centralised to device intelligence to occur.”

In addition, those initial devices did not have the benefit of the tremendous computing power, memory capacity, or data transmission capability emerging today. Current microprocessor horsepower coupled with low power requirements are what’s allowing us to embed more and more decision-level firmware and software into devices, says Ray Rogowski, manager global product marketing, field instrumentation, Honeywell Process Solutions. “Not too many years ago, you had to go back to the DCS to find out what was going on in the field. Now you can package it right up in the sensor.”

Initially, microprocessors “went down to the device to improve performance,” says Mark Schumacher, president of the Rosemount Pressure Business for Emerson Process Management, “to do things like temperature linearisation and compensation. It is that performance improvement and reliability that continue to be the foundation for the growing application of intelligence devices.”

Components such as Siemens Simocode Pro V current/voltage monitoring modules add intelligence to motor control centre applications. Source: Siemens Energy & Automation
Components such as Siemens Simocode Pro V current/voltage monitoring modules add intelligence to motor control centre applications. Source: Siemens Energy & Automation

Since his company has historically followed a philosophy of centralised control, Graham Harris, president, Beckhoff Automation, argues that multi-core processing puts unprecedented amounts of power on a chip to create an “all-in-one” automation, control, and measurement platform that can do everything from performing machine conditioning and real-time measurement to modifying control algorithms in real time. According to Harris, “Using one powerful CPU, it is more efficient to manage numerous devices in software versus control via distributed CPUs in every measurement and monitoring device. PC- and Ethernet-based tools are similar in approach to the human brain, managing 'control’ of our organs and body parts via the nervous system. This kind of approach in automation is what we call 'scientific automation,’ an exciting growth area of technology. Within five years, engineers will see it in areas like adaptive control and condition monitoring, and in the development of more intelligent machines overall.”

Benefits in balance

Intelligent devices reap three primary benefits for automation and control, says Rami Al-Ashqar, motion control product manager, Bosch Rexroth:

1. The controller doesn’t have to do everything. Component intelligence frees the controller to do other tasks.

2. Electronic equipment on a machine can be more easily modularized, allowing better maintenance and easier troubleshooting.

3. Flexibility is increased. Distributed intelligence facilitates the easier incorporation of more devices. One controller interfaces with many devices which do the work.

They also can save energy, adds Mintz. “Having intelligence inside motors and drives, for example, gives you closer communications and connections that allow the components to function better together. The more a controller can communicate with a drive, and the more the drive knows what is going on in the motor, the better able an operation is to make those small process changes that make a difference.”

Among the more important aspects of incorporating intelligent devices into a system is ease of use. Says Emerson’s Schumacher, “Putting more intelligence into field devices unquestionably makes them more complicated. That’s why it is critical to keep devices easy to use, a delicate balance and a tough engineering challenge. No information from a device is important if it is not easily accessible. Many plants, today, are staffed by fewer, less experienced workers. On the one hand, vendors must concentrate on building ease of use into their intelligent products. On the other, end-users must be disciplined about what information they really need to know.”

Intelligent components, such as this microprocessor-based temperature transmitter, enhance measurement accuracy and reduce maintenance. Source: Moore Industries-International Inc.
Intelligent components, such as this microprocessor-based temperature transmitter, enhance measurement accuracy and reduce maintenance. Source: Moore Industries-International Inc.

Part of the burden, adds Arves Stolpe, CompactRio Product Manager, for National Instruments, falls to software developers to create applications for modern multi-processing systems that are easy to use. “Today’s complex systems are extremely powerful, but without the right tools, they are also difficult to program, design, and manage. We need products that don’t require a multiprocessor embedded system developer to apply them,” he insists. “If we don’t do that, industrial and automation engineers will need to be more than control experts, they will need to be embedded experts. And that is really asking a lot.”

Building intelligence into devices also has driven diagnostics to the component level. “It reduces maintenance because the machine can be modularised,” says Al-Ashqar. “If the electronics and the machine are modularised, it is easier to identify a problem. Error messages can be displayed and problems pinpointed.”

First generation smart instruments could fail in unpredictable ways due to undetected software faults, adds Charles Larson, director of technology for Moore Industries-International Inc. “But increased processing power available at low power has allowed devices to perform more extensive diagnostics. Some temperature transmitters can detect and identify broken lead wires and high lead resistance conditions when multi-wire sensor configurations are used. Temperature transmitters that accept dual-sensor inputs allow fallback to single sensor operation when a sensor failure is detected. When coupled with external watchdog hardware, a device that is not operating properly can be guaranteed to generate a fault signal. That kind of reliability allows smart instruments, such as intelligent safety alarm trips, to be used even in safety applications.”

Many users today want to embrace device-level intelligence, says Siemens’ Woolfolk, but are still thinking in terms of old school capabilities. “Products today are so capable,” he says. “The more you let them do for you, the more valuable will be the return. Intelligent components do more than monitor a contact closure. They diagnose a developing problem and let users pre-emptively head off a fault or a failure that could shut down production.”

Technology of choice

What, then, is the ultimate in field device intelligence? Wireless, agree most. It may still be “a giant leap of faith” for many, but comfort with the technology is growing and more applications will emerge as wireless is proven to work. “It will be the easiest, most economical option, which will make it the technology of choice,” says Emerson’s Schumacher. “The cost of devices is much less than the cost of installing them,” adds Honeywell’s Rogowski. “If you can eliminate the wiring and still have devices that are reliable, safe, and robust, the savings are huge.”

Microprocessor performance and lower power requirements have enabled wireless technologies to expand significantly, says Mark Muldowney, field instruments technology, product architect, Honeywell Process Solutions. “Advances in signal processing let devices not just give data to end users, but to analyse the data and generate information that is actionable—giving users information they need and information they can trust.”

The need for easy-to-use smart devices is critical. To show easily even non-engineers can learn to develop intelligent systems, National Instruments has launched a robotics competition using Nitro. Source: National Instruments
The need for easy-to-use smart devices is critical. To show easily even non-engineers can learn to develop intelligent systems, National Instruments has launched a robotics competition using Nitro. Source: National Instruments

The concept of intelligent sensors everywhere—or ubiquitous sensor networks as UCLA researchers call them—could one day become part of our control processes, muses Stolpe, whose company has just released wireless sensor nodes. “The closer the sensor can be to the decision-making process, the higher quality signal possible. And really, control depends on the accuracy of the measurements. If you have an accurate measurement with low noise at the node, you can respond to any input quickly and accurately.”

To make the impossible, possible and the possible, easy

To hear those closest to the topic, the potential for intelligent devices has an exciting, varied, and limitless future. “We see further integration coming,” says Mintz. “We’ve got algorithms that use a sensor on the gearbox and intelligence in the drive to tell you when to do an oil change. We see the next generation integrating functions into single packages: a gearbox with everything inside that you plug into an Ethernet port. It gives many pause for thought.”

“The possibilities are incredible,” says Al-Ashqar, recalling that few would have predicted 20 years ago the impact of mobile phones. “A remote PLC might one day act as a master controller taking information from multiple plants, communicating it to the right personnel, and perhaps even making decisions or running machines in multiple locations.”

The ability to add functions more easily will continue to expand, offers Woolfolk. “Safety functions will become more and more important,” he observes, “and are starting to find their way into the intelligent device.”

Of course hurdles remain, among them powering intelligent devices and ensuring wireless link reliability. “Ubiquitous sensors will have to be very low power devices that are nonetheless very powerful; and wireless still must solve issues with communicating back to a central host, especially in mission critical applications,” says Stolpe, but he believes the challenges will be overcome. “If we can make intelligent products sufficiently capable and easy to apply, we will allow operations and manufacturing personnel to be successful in what they need to do. We will drive intelligent device technology to the point of being incredibly usable and insanely powerful, making the impossible possible, and the possible easy.”


Most Viewed Articles...

Print this page | E-mail this page