This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Back to Basics

10 February 2009

Control Engineering explains the basics of process analysers and introduces two products for the analysis of gas.

Emerson's X-Stream process gas analysers
Emerson's X-Stream process gas analysers

When there is a need to monitor a process variable that extends beyond the ‘big four’ (pressure, flow, temperature, and level), some type of process analyser usually does the job. This category of instrumentation has its own big four subtypes:
 Composition—Detect and measure specific chemical components in the process stream;
 Electrochemical—Measure specific ion concentration, most commonly hydrogen (pH);
 Spectrophotometric—Use light absorbing characteristics to detect and measure specific components; and,
 Physical property—Measure specific gravity, density, viscosity, etc.

Since manufacturing processes are generally designed for specific functions, the composition or characteristics of a given product should fall into relatively narrow bands. For example, while a broad spectrum analyser that can break down any unknown substance into its component parts may exist in a lab (at least on TV crime dramas), such are not generally practical in a real-life production environment. Gas chromatograph and mass spectrometer devices can quantify a wide range of substances, but their cost and relative complexity make them a choice when simpler technologies can’t do the job.

‘Customers ask us about reliability more than accuracy or precision,’ says Gary Brewer, product manager for ABB’s process automation division. ‘Manufacturers don’t usually have large support staffs, so if the analyser goes down, the whole process can go down. So the rule of thumb is to apply the simplest technology possible that will get the needed measurement.’

When trying to quantify a component or contaminant in a product, it is critical to know what substance you’re looking for. In situations where more than one test has to be performed, more than one analyser or analyser technology will likely be involved.

Consider an example where the task is to analyse effluents in flue gas from a boiler, determining quantities of sulphur dioxide (SO2), nitrous oxides (NOx), acid gasses, and mercury. SO2 can be measured by infrared absorption, non-dispersive infrared, or ultraviolet. For NOx, use chemiluminescence or ultraviolet. Mercury calls for ultraviolet. Acid gasses may require a gas chromatograph or mass spectrometer. Even though ultraviolet may work for three of the four, the situation will likely require more than one sensor, perhaps even a separate sensor for each substance. Multi-component sensors are available, but there are trade-offs with cost and complexity.

Some relatively simple tests, such as pH or dissolved oxygen, can be handled by a probe inserted into a process stream. However, few analysis technologies are this simple. Most involve moving a sample of the product to a device where it can carry out a more complex analytical operation. Analysis becomes, in effect, a batch operation where a sample is extracted from the process stream and checked, just as if it were carried to a lab manually. This process can be automated and happen at appropriate intervals.

Methods for designing piping to move samples to the analyser is another issue. In some cases to save cost, one device can serve more than one process line, as long as it can handle the span of variables required. Technologies have their own cycle time for analysis. Near infrared is fast enough that it can be essentially continuous, while a gas chromatograph can take 30 minutes to complete a test.

The key to selecting an analyser, like any piece of instrumentation, is to understand your process and what information is critical to the larger control strategy.

One such product is Emerson Process Management’s X-Stream range of process gas analysers. These products have been released with IntrinzX intrinsically linear photometric technology and offer up to four measurements in one enclosure.

IntrinzX technology uses split cell dual beam photometry and constant comparison of the reference signal and measurement signal to achieve an intrinsically linear response to changes in concentration. The analysers utilise Rosemount Analytical infrared, ultraviolet and visible (NDIR/UV/UVS) photometry, paramagnetic and electrochemical oxygen, and thermal conductivity sensor technologies.

The X-Stream analysers are available in four configurations. There is a compact general-purpose version, which can be mounted in half a 19-inch rack or on a tabletop. The standard general purpose version also has a tabletop option, as well as being suitable for mounting in a standard 19-inch rack. The field mounted NEMA 4X / IP66 X-STREAM can be purged or pressurised for ATEX-approved installation in Zone 1 or 2 hazardous areas. The flameproof version can be installed in Class I, Zone 1, Group IIB + H2 hazardous areas.

Thermo Fisher Scientific also manufacturers a range of process analysers and recently introduced a new multi-gas analyser. The Thermo Scientific Model 60i is a full-extractive, multi-gas analyser that features non-dispersive infrared (NDIR) optical filter technology to measure up to six gases, including CO, CO2, NO, NO2, and SO2. The Model 60i also accommodates an optional O2 measurement capability using either an affordable electrochemical cell or, when high accuracy and reliability are required, paramagnetic technology. In addition, the unit is designed with built-in safeguards that protect the analyser in the event of a sample conditioning system malfunction.

-Peter Welander, Control Engineering

Contact Details and Archive...

Related Articles...

Most Viewed Articles...

Print this page | E-mail this page